پسر بد- - bad boy
این وبلاگ توسط یکی از دانش آموزان مدرسه ی تیزهوشان شهرکرد درست شده است. از این وبلاگ لذت ببرید

نام :
وب :
پیام :
2+2=:
(Refresh)

<-PollName->

<-PollItems->

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز : 84
بازدید دیروز : 8
بازدید هفته : 140
بازدید ماه : 139
بازدید کل : 148620
تعداد مطالب : 108
تعداد نظرات : 66
تعداد آنلاین : 1



Alternative content


دانشمندان با دوربین هایی قوی و بزرگ که تلسکپ نام دارد، ماه را مشاهده می کنند. در ماه، موجود زنده وجود ندارد . و هوا وآب هم در آنجا نیست. سطح ماه، از سنگ و غباری نرم پوشیده شده است. در روی ماه، کوه های بلند، دشت های وسیع و گودال های دایره شکل زیادی وجود دارد...




  •  
  •  
  •  
  •  
  •  
  •  
 

کره ی ماه به دور زمین می گردد. یک بار گردش ماه به دور زمین، نزدیک به چهار هفته طول می کشد.



  •  
  •  
  •  
  •  
  •  
  •  
 

خورشید ما کمی بیش از چهار و نیم میلیارد سال پیش تشکیل شده است. خورشید ما نیز مثل هر ستاره دیگری در جهان به شکل توده در هم پیچیده ای از ابرهای گازی که عمدتا از هیدروژن و هلیم تشکیل شده بود به وجود آمده اما خرده ریزه هایی که از انفجار سایر ستاره ها باقی مانده بودند، غبارهای بسیار ریز کیهانی که از عناصر سنگین تر همانند کربن، اکسیژن، آلومینیوم، کلسیم و آهن تشکیل شده بودند، نیز در سرتاسر این ابرها پراکنده بودند. این ذرات گرد و غبار که حتی از ذرات غباری که لبه پنجره می نشیند، کوچک تر است، به عنوان نقاط تجمع در سحابی خورشیدی عمل می کند. سایر موارد از جمله یخ، دی اکسید کربن منجمد، دور این نقاط گردهم می آیند و بدین ترتیب این ذرات کم کم بزرگ و بزرگ تر شده و به اجرامی به اندازه یک دانه شن، یک صخره و نهایتا یک تخته سنگ تبدیل می شوند. طی چند میلیون سال، تریلیون ها تریلیون قطعه یخی، سنگ ریزه و اجرام فلزی در اطراف خورشید جوان گردهم می آیند. طی ربع میلیارد سال بعد بسیاری از این اجسام در یکدیگر ادغام شده و بدین شکل سیارات بزرگ ، اقمار، سیارک ها و اجرام موجود در کمربند کوئیپر به وجود می آیند. (برای کسب اطلاعات بیشتر می توانید به مقاله «tightening our kuiperbelt» که در شمار فوریه 2003 نشریه Natural History به چاپ رسیده است مراجعه کنید.) اجرام کوچکتری که حول خورشید در حال چرخشند، طی مدت های طولانی که از تشکیل آنها گذشته است، چندان تغییر نکرده اند.

بعضی وقت ها یکی از این قطعات سرگردان که باقیمانده های تشکیل سیارات محسوب می شوند با سطح زمین برخورد می کنند. هنگامی که قطعات با زمین برخورد کنند، شهاب سنگ نامیده می شوند. مجموعه داران شهاب سنگ ها را برحسب میزان جلب توجهشان قیمت گذاری می کنند، اما اخترشناسان این اجرام را با توجه به تاریخ شان ارزش گذاری می کنند. همانطور که سنگواره های گیاهان و جانوران، داستان حیات در زمین را ثبت می کنند، این اجرام نیز داستان منظومه شمسی را در سال های اولیه آن ثبت کرده اند. بعضی اوقات نیز این امکان وجود دارد که از آنها برای بررسی تاریخ شکل گیری منظومه شمسی استفاده کنیم. در تحقیقات جدید که توسط شوگوتاچیبانا (Shogo Tachibana) و گری هاس (gary Houss) در دانشگاه ایالتی آریزونا انجام شده است نیز دقیقا همین کار صورت گرفته است؛ یعنی آنها با بررسی آهن رادیواکتیو - یا به عبارت بهتر - تحقیق روی دوتا از قدیمی ترین شهاب سنگ های شناخته شده، توانستند گام دیگری به شناخت حوادثی که به تولد خورشید منجر شد، بردارند. آهن موجود در زمین رادیواکتیو نیست، یا حداقل در حال حاضر رادیواکتیو نیست. بیش از 90 درصد آهنی که در زندگی روزمره با آنها سروکار داریم، از جمله آهنی که در ساختمان ها به کار می رود یا آهن موجود در کلم بروکسل و خون، حاوی 26 پروتون و 30 نوترون است. سایر اتم های آهن نیز حاوی 28، 31 یا 32 نوترون است. انواع مختلف یک عنصر که ایزوتوپ نامیده می شوند، توسط اختلافی که در تعداد نوترون های هسته آنها وجود دارد، از یکدیگر متمایز می شوند، اما برای نامگذاری آنها مجموع تعداد نوترون ها و پروتون های هسته ذکر می شود؛ بنابراین انواع مختلف آهن به صورت آهن 56 یا آهن 58 و غیره نامگذاری می شود.

تمام این ایزوتوپ های آهن از لحاظ رادیواکتیوی پایدارند. ایزوتوپ های دیگری نیز از آهن وجود دارند اما پایدار نیستند. طی زمان اتم های سازنده ایزوتوپ های ناپایدار به طور خودبه خود ذرات زیر اتمی را از هسته خود منتشر می کنند. این فرآیند (که تلاشی هسته ای نامیده می شود) باعث تغییر در تعداد پروتون ها و نوترون های موجود در هسته می شود و بدین ترتیب یک ایزوتوپ به ایزوتوپ دیگر یا حتی به عنصر متفاوت دیگری تبدیل می شود. در نهایت نیز ایزوتوپ ناپایدار مورد نظر از بین می رود. از سرعت تلاشی رادیواکتیو می توان به عنوان ساعتی برای تعیین زمان حوادث مهمی که در تاریخ زمین یا منظومه شمسی روی داده است، استفاده کرد. حداقل به طور نظری، می توان به اندازه گیری نسبت ایزوتوپ های رادیواکتیو ویژه به محصولات پایداری که طی تلاشی بعضی عناصر به وجود می آید، دریافت که از زمانی که جسم آخرین بار از گونه های رادیو اکتیو غنی شده است، چه مدت زمانی می گذرد با توجه به این نکته که هرکدام از ایزوتوپ های رادیواکتیو با سرعت ثابتی که ویژه آن ایزوتوپ است، تجزیه می شود، سرعت تجزیه را می توان بر حسب مفهوم «نیمه عمر بیان کرد. نیمه عمر نشان دهنده مدت زمانی است که طول می کشد یک ایزوتوپ ویژه تجزیه شده و به ایزوتوپ پایدارتر خود تبدیل شود. اندازه گیری هایی که با استفاده از ایزوتوپ های با عمر کوتاه همانند کربن 14 که دارای نیمه عمر حدود 700/5 سال است، می تواند تاریخ آثار تمدن های اولیه بشری را که در تحقیقات باستانشناسی به دست می آید، نشان دهد.

اما اندازه گیری های صورت گرفته توسط ایزوتوپ های با نیمه عمر طولانی تر، همانند اورانیم 238 که نیمه عمری حدود 5/4 میلیارد سال دارد می توانند تاریخ تشکیل صخره ها، سیارات و ستارگان را بیان کنند. آهن 60 که ایزوتوپ رادیواکتیو با نیمه عمر حدودا 5/1 میلیون سال است طی انفجارهایی که در ستارگان بسیار سنگین یا ابر نواختر (Supernova) روی می دهد، به وجود می آید. از آنجایی که منشا این ایزوتوپ منحصر به فرد است، می توان از این خاصیت مفید برای درک رویدادهای کیهانی استفاده کرد. تاجیبانا و هاس نسبت ایزوتوپی حدود ده نمونه کوچک که از دو شهاب سنگ قدیمی تهیه شده بود را اندازه گیری کردند. این دو جرم که به خاطر مکانی که در آن یافت شده اند، بیشانبور و کریمکا نامیده می شوند (اولی در هند و دومی در اوکراین به دست آمده اند) به دسته ای از اجرام تعلق دارند که طی چند میلیون سال تولد خورشید تشکیل شده اند. تمام آهن 60 موجود در دو نمونه شهاب سنگ مدت ها پیش از بین رفته و به کبالت 60 رادیواکتیو تبدیل شده است. کبالت 60 رادیواکتیو هم به نوبه خود به اتم پایدار نیکل 60 تبدیل شده است.

تاجیبانا و هاس با آزمایشاتی که روی ذرات مواد معدنی موجود در شهاب سنگ ها انجام دادند، دریافتند مقدار اضافی قابل توجهی از نیکل 60 در نمونه موجود است که این نکته نشان دهنده آن است که آهن 60 زمانی در این نمونه ها وجود داشته است. این محققین با استفاده از سایر عناصر و ایزوتوپ ها، به عنوان ساعت مرجع تاریخ آهن 60 را ردیابی کرده و دریافتند که در سحابی خورشیدی اولیه به ازای هر یک میلیارد (109) اتم پایدار آهن 56 حدود 300 اتم آهن 60 داشت. شاید این عدد بسیار کوچک به نظر برسد اما باید گفت این عدد ده برابر نسبت ایزوتوپ هایی است که فعلا در گازهای بین ستاره ای کهکشان راه شیری وجود دارد. این مقدار اضافی از آهن 60 درابتدای تشکیل منظومه شمسی رازهای زیادی در مورد منشا کهکشان ما بیان می دارد.

اخترشناسان می دانند که خورشید از ابرگازی شکلی حاصل شده است. علاوه بر آن می دانیم که عاملی باعث شده است تا این توده ابر به چنان چگالی برانی برسد که به تشکیل خورشید منجر شده است. اما پرسش این است که آن حادثه اولیه چه بوده است؟ طبق مدلی که پیش از این ارائه شده است، امواج انفجار ناشی از ابر نواخترها مظنون اصلی این رویداد است. میزان آهن 60 موجود در این دو شهاب سنگ قدیمی دلایل جدیدی در تأیید این نظر فراهم می کند. احتمالا لایه های در حال انبساط مواد ستاره ای که حاوی اتم های آهن 60 حاصل از انفجار ابر نواخترها بودند، هسته های اولیه ابرهای خورشیدی را تشکیل دادند و به همین دلیل حاوی این ساعت های آهن رادیواکتیو هستند. در همان زمان، نیروی اولیه لازم برای تشکیل خورشید منظومه شمسی و نهایتا زمین فراهم شده است.




  •  
  •  
  •  
  •  
  •  
  •  
 

ماه تنها قمر طبیعی زمین وپنجمین قمر بزرگ منظومه شمسی، چندمیلیارد سال است که به دور زمین می چرخد. هزاران سال است که انسان آن را نظاره نموده و به عنوان نشانی از خداوند به آن احترام گذاشته است. او همواره در این رویا بوده که روزی بتواند به این جهان همسایه سفر کند. ماه با پدیده های نوری منظم و از روی قاعده ای که مرتب تکرار می شود از قبیل هلال و بدر به نیاکان ما یاری نموده تا بتوانند نخستین تقویم های قابل استفاده را به وجود آورند. ماه به خاطر نزدیک بودن به زمین بعد از خورشید درخشانترین جرم آسمانی از دیدگاه زمینیان است که در حالت بدر(ماه کامل) با قدر ۱۲- می درخشد. ماه همچنین اولین جرم آسمانی بود که انسان توانست در مورد فاصله، اندازه، ابعاد و مناظر آن به تحقیق و بررسی بپردازد.

ماه در یک مدار بیضوی( همانند مدار سیارات منظومه شمسی) به دور سیاره مادر خود یعنی زمین می چرخد که در حالت حضیض (نزدیکترین فاصله) ۳۵۶۵۰۰ کیلومتر و در حالت اوج (دورترین فاصله) ۴۰۶۷۰۰ کیلومتر از زمین فاصله می گیرد ولی به طور متوسط ۳۸۴۰۰۰ کیلومتر از زمین فاصله دارد. قطر ماه در حدود ۳۵۰۰ کیلومتر است و تقریباً برابر با عرض قاره استرالیا است.

این تغییر فاصله باعث می شود قطر ظاهری ماه بین 38/29 تا 53/33 دقیقه قوسی تغییر کند.(منظور از قطر ظاهری،اندازه زاویه جسم در کره آسمان است.به عبارت دیگر زاویه ای است که بین دو خط رسیده از دو سر جسم در چشم راصد ایجاد می شود)واضح است که هرچه ماه به حضیض مداریش نزدیکتر باشد قطر زاویه ای آن بیشتر وهرچه دورتر باشد(یعنی در اوج باشد)کوچکتر دیده خواهد شد.

 ماه تقریباً هر ۵/۲۷ روز یک بار به دور زمین می چرخد و در این مدت هم یک بار به دور خود می چرخد. به این جهت است که ماه همواره یک روی خود را به ما نشان می دهد چیزی که به قفل شدگی گرانشی معروف است.درواقع بشر قبل از پرتاب سفینه های فضایی به ماه،هرگز طرف دیگر ماه را ندیده بود.

نکته دیگری که باید به آن اشاره نمود اختلاف بین محور چرخش ماه به دور خود با صفحه مداریش است.ماه مانند زمین ،در صفحه مداریش به دور خودش نمی چرخد بلکه استوای ماه با صفحه مداری آن زاویه ای در حدود 1 درجه و32 دقیقه قوسی می سازد.البته این زاویه در مقایسه با زاویه تمایل محور دوران زمین که در حدود 5/23 درجه است بسیار کم است.این زاویه در زمین موجب بوجود آمدن فصول سال گردیده است.

                               حرکت ظاهری ماه در آسمان

آنچه که ظاهرا یک ناظر از حرکت ماه در آسمان مشاهده می کند،حرکت از غرب به شرق در آسمان می باشد.در این حرکت ،در هر ساعت ماه حدود نیم درجه ودر هر روز حدود ۱۲ درجه از غرب به شرق حرکت می کند.همچنین با این حرکت در چهارده روز اول ماه قمری،بطور متوسط زمان غروب ماه حدود ۵۰ دقیقه بتاخیر می افتد( جالب است بدانید از آنجاییکه دلیل اصلی وقوع پدیده جزر ومد هم ماه می باشد رخ دادن جزر ومد هم روزانه به همین اندازه به تاخیر می افتد)

در پشت این حرکت ظاهری ،حرکت واقعی ماه در آسمان ودر فضا قرار دارد که این ناشی از جاذبه اصلی زمین واثرات گرانشی وتاثیرات مغناطیسی خورشید ودیگر سیارات می باشد.به لحاظ جرم ناچیز ماه در منظومه شمسی، حرکت مداری ماه بسیار پیچیده بوده ومدار آن بسیار متغییر است بطوریکه در کتب مرجع نجومی روابط محاسباتی مدار ماه به کمک بسط روابط به سری هارمونیکهای کروی به یک دنباله حدود ۶۰۰ جمله مثلثاتی صورت می گیرد که خود نشان دهنده پیچیدگی محاسبه وآنالیز مدار ماه می باشد.یکی از پدیده های مرتبط به مدار و سرعت چرخش ماه بدور زمین رخگرد است.


                                          دمای سطحی ماه
دامنه تغییرات دمای سطح ماه بسیار زیاد است. هر بخش از سطح ماه به مدت تقریباً دو هفته پیاپی در معرض اشعه خورشید قرار می گیرد و سپس برای مدتی به همین درازا شب را می گذراند. به دلیل عدم وجود جو قابل ملاحظه در ماه، همچنین کم بودن ضریب بازتاب این کره (حدود ۷ درصد) اختلاف دما میان بخش روشن و تاریک ماه بسیار زیاد است.
دمای بخش روشن ماه گاهی به حدود ۱۳۰ درجه سانتیگراد می رسد و این در حالی است که دما در بخش تاریک آن تا حد ۱۸۰- درجه سانتیگراد کاهش می یابد. یعنی این جرم آسمانی اختلاف دمایی در حدود ۳۱۰ درجه را در سطح خود تحمل می کند.


                                            اهله ماه
می دانیم که ماه هیچ نوری از خود ندارد و تنها با منعکس کردن نور خورشید روشن می شود. در نتیجه در هر لحظه زمانی تنها نصف سطح ماه روشن خواهد بود(نیم سطحی که روبه روی خورشید است) در حالی که نیم سطح دیگر تاریک است.

راز بوجود آمدن این اشکال متفاوت ماه یعنی از هلال تا بدر،در مدار ماه ونحوه ی نورپردازی خورشید نهفته است. چون ماه دور زمین را در کمتر از یک ماه تقویمی طی می کند بسته به این که چه مقدار از سطح روشن شده ماه به طرف ما باشد شکلهای مختلفی از آن را مشاهده می کنیم.
در ماه نو (NEW MOON)ماه تقریباً بین خورشید و زمین قرار می گیرد به طوری که طرف تاریکش به سوی ماست و ما نمی توانیم آن را ببینیم.همچنان که ماه به سفر خودش به دور زمین ادامه می دهد کم کم از جلوی خورشید کنار می رود و ما می توانیم قسمتی از آن را که به وسیله نور خورشید روشن می شود ببینیم(هلال رو به بدر یاWaxing crescent ). در این موقع ماه به صورت یک هلال نازک دیده می شود. در زمانی که ماه یک چهارم سفرش به دور زمین را طی کرده باشد ما می توانیم نصف طرف روشن شده ماه را ببینیم و در آن موقع گفته می شود که تربیع اول (1st  Qr)است. بعد از این و به تدریج قسمت های بیشتری از ماه را می بینیم (تحدب به سوی بدریا Waxing Gibbous)تا این که در حدود دوهفته بعد از ماه نو تمام قسمت های قابل رویت ماه دیده می شود(حالت بدریا Full moon). در این حالت خورشید و ماه در نقطه مقابل یکدیگر قرار دارند و زمین بین آنهاست. وقتی که ماه در این موقعیت است ماه در حدود زمان غروب آفتاب طلوع می کند. همچنان که ماه به سفرش ادامه می دهد به خورشید نزدیک تر می گردد (تحدب به سوی محاق یا Waning Gibbous)و بنابراین ما به تدریج قسمت کمتری از آن را مشاهده خواهیم کرد. تربیع دوم( ۳rd Qr)یا تربیع آخر زمانی اتفاق می افتد که ما بتوانیم نصف طرف روشن ماه را در آسمان صبح ببینیم بعد از چند روز در حالت هلال به سوی محاق (Waning crescent)بسر برده و بالاخره بعد از بیست و نه روزگذشته از ماه نو ماه یک بار دیگر طرف تاریکش را به سوی زمین نشان می دهد.مسلمانان جهان مناسک دینی واعمال مذهبی خود را بر اساس تقویم قمری به جای می آورند.مبنای این تقویم ،رویت هلال ماه است.


                                              گره های ماه
 


 



  •  
  •  
  •  
  •  
  •  
  •  
 


 

چقدر احتمال برخورد مریخ با زمین وجود دارد؟ در اثر ادامه بی نظمی های مدارهای سیاره ای در منظومه شمسی، زمین و مریخ به یکدیگر بسیار نزدیک می شوند و حتی احتمال برخورد آنها نیز وجود دارد.


 

حتماً شما نیز خبرهای گوناگونی در رابطه با سال 2012 شنیده اید. البته اکثر رسانه ها و مراکز فضایی جهان با دلایل قاطع امکان وقوع آنرا رد کرده اند. اما نظریه خروج سیارات از مدار خود و احتمال برخورد آنها با یکدیگر داستان دیگریست. برخلاف سال 2012 این نظریه کاملاً علمی و تایید شده بوده و در حقیقت نتیجه تحقیقات خود این مراکز فضایی است. تنها سوالی که پیش می آید این است : چه زمانی این حادثه به وقوع خواهد پیوست؟


 


 

آینده دردناکی در انتظار منظومه شمسی است.


 

شبیه سازی های کامپیوتری جدید نشان داده شانس کمی وجود دارد که در اثر تداخلات مداری سیارات طی چند میلیارد سال آینده یک برخورد بین زمین با عطارد، مریخ یا زهره به وقوع بپیوندد. عطارد علی رغم اندازه کوچکش در منظومه شمسی بیشترین ریسک را داراست.


 

نتایج کامپیوتری نشان می دهد یک درصد این شانس وجود دارد که بزرگ شدن مدار عطارد به حدی برسد که این سیاره در طی مسیر خود به دور خورشید مدار زهره را قطع نماید.


 

بر اساس تحقیقات انجام گرفته "دوزخ سیاره ای" به وقوع خواهد پیوست و عطارد یا از منظومه شمسی به بیرون رانده خواهد شد و یا با خورشید یا سیاره همسایه اش (مثل سیاره زمین) برخورد خواهد کرد.


 

 


 

سردرگمی منظومه شمسی


 

محققین جیک لاسکار (Jacques Laskar) و مایکل گاستین (Mickael Gastineau) از رصدخانه پاریس تعداد 2501 سناریو را برای مدارهای سیاره ای مختلف با شبیه سازهای کامپیوتری بررسی نمودند. اغلب نتایج به دست آمده هیچ برخوردی را به همراه نداشت و این درحالی است که 25 مورد از آنها منتهی به قطع مدار عطارد می شد.


 

بر طبق شبیه سازی های انجام گرفته اگر افزایش طول مدار عطارد منجر به برخورد این سیاره با خورشید یا سیاره زهره گردد مابقی منظومه شمسی زیاد تحت تاثیر قرار نخواهد گرفت.


 

اما اگر تغییرات مداری عطارد باعث حرکت آن به سوی یکی دیگر از سیارات داخلی منظومه شمسی گردد احتمالا منجر به برخورد زهره یا مریخ با زمین خواهد شد.


 


 

در ابتدا احتیاج است که عطارد با نیروی گرانشی مشتری ناپایدار و بی ثبات گردد و بعد خود منجر به ناپایداری مریخ شده که در نهایت باعث می شود به زمین بسیار نزدیک گردد. تنها در این صورت است که مدار زهره ناپایدار شده و باعث برخورد آن با زمین می گردد.


 

دانشمندان در زمان بررسی داده ها متوجه شدند که تنها در 5 مورد احتمال دارد که مریخ از منظومه شمسی به بیرون پرتاب شود و در 200 مورد دیگر با اجرام آسمانی دیگری برخورد خواهد کرد ( که 48 مورد آن مربوط به زمین بود )


 

لافلین در مطالعه ای در سال 2001 احتمال پرتاب زمین به بیرون را یک در 100000 تعیین نمود.


 

همانطور که سیارات به اطراف حرکت می کنند تراژدی های مختلفی در انتظارشان است. شواهدی از چنین برخوردهایی در منظومه های سیارات خاراجی دیده شده است، از جمله اینکه احتمالا 2M1207B از برخورد و ترکیب دو سیاره به وجود آمده است.


 

و ماه حدوداً 4 میلیارد سال قبل زمانی شکل گرفت که یک سیاره به اندازه مریخ با زمین برخورد کرد.


 

 


 

دلایل بسیار محکم


 

نتایج مدل جدی جدید شواهد و مدارک بسیار محکمی برای آینده منظومه شمسی فراهم آورده.


 

لافلین در SPACE.com گفت: "اینها اولین محاسباتی هستند که به درستی و با قطعیت به سوالات همیشگی درباره منظومه شمسی پاسخ گفته است." چرا که مدل لاسکار و گاستین بر پایه معادلات نابرابری میانگین (non-averaged equations) بوده و نسبیت عمومی را نیز محاسبه می کند. در مدل های قبلی حرکات سیاره ای بر پایه معادلات برابری میانگین بود و اثرات نسبیت عمومی را شامل نمی شد.


 

زمانی که سیارات مورد نظر به نزدیکی برخورد می رسند برای پیش بینی های دقیق و درست چنین معادلاتی خوب جواب نمی دهد. در واقع نسبیت عمومی اثر گرانش بر زمان و فضا را نادیده می گیرد. که این دو نقش مهمی در سناریوی برخورد بازی می کنند.


 

 


 


 

 


 

لافلین می گوید: "مدار عطارد کمی بیضی شکل است و خورشید به جای اینکه در مرکز قرار داشته باشد در یک سمت این بیضی قرار گرفته. پس از یک مدت زمان طولانی (مثلا 100000 سال) جهت گیری مدار عطارد تغییر می یاید. نسبیت عمومی به این تغییر سرعت می بخشد و خود باعث می شود تا احتمال اینکه مشتری بتواند اثرات عظیمی بر روی مدار عطارد داشته باشد کاهش یابد.


ادامه مطلب
نوشته شده در تاريخ برچسب:, توسط میلاد 2000
تمامی حقوق این وبلاگ محفوظ است | طراحی :